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Abstract. In this paper, we study the problem of mining frequent di-
amond episodes efficiently from an input event sequence with sliding
a window. Here, a diamond episode is of the form a �→ E �→ b, which
means that every event of E follows an event a and is followed by an event
b. Then, we design a polynomial-delay and polynomial-space algorithm
PolyFreqDmd that finds all of the frequent diamond episodes without
duplicates from an event sequence in O(|Σ|2n) time per an episode and
in O(|Σ| + n) space, where Σ and n are an alphabet and the length
the event sequence, respectively. Finally, we give experimental results
on artificial event sequences with varying several mining parameters to
evaluate the efficiency of the algorithm.

1 Introduction

It is one of the important tasks for data mining to discover frequent patterns
from time-related data. For such a task, Mannila et al. [7] have introduced the
episode mining to discover frequent episodes in an event sequence. Here, the
episode is formulated as an acyclic labeled digraphs in which labels correspond to
events and edges represent a temporal precedent-subsequent relation in an event
sequence. Then, the episode is a richer representation of temporal relationship
than a subsequence, which represents just a linearly ordered relation in sequential
pattern mining (cf., [3, 9]). Furthermore, since the frequency of the episode is
formulated by a window that is a subsequence of an event sequence under a
fixed time span, the episode mining is more appropriate than the sequential
pattern mining when considering the time span.

Mannila et al. [7] have designed an algorithm to construct episodes from a
parallel episode as a set of events and a serial episode as a sequence of events.
Note that their algorithm is general but inefficient. Then, the episode mining



has been developed by introducing the specific forms of episodes for every target
area together with efficient algorithms [5, 6, 8].

As such specific forms of episodes, Katoh et al. have introduced diamond
episodes [6] and elliptic episodes [5]. In Fig. 1, we show examples of an input
event sequence, a serial episode, and a diamond episode over an alphabet. Both
episodes have the special event types, a source and a sink . Then, by setting the
source and the sink to the specified event types, we can find frequent episodes
with the source as a premise and the sink as a consequence. In particular, from
bacterial culture data [5, 6], they have succeeded to find frequent diamond and
elliptic episodes concerned with the replacement of bacteria and the changes for
drug resistance, which are valuable from the medical viewpoint. Here, the source
and the sink are set to the bacteria and another bacteria for the former episodes,
and the sensitivity of antibiotic and the resistant of the same antibiotic for the
latter episodes.

Note that the algorithms designed by Katoh et al. [5, 6] are so-called level-
wise; The algorithms first find the information for the occurrences of serial
episodes in an event sequence, by scanning it just once. After regarding the
serial episodes as itemsets, the algorithms then construct the frequent episodes
by using the frequent itemset mining algorithm AprioriTid [1].

While the level-wise algorithms are sufficient to find frequent episodes ef-
ficiently in practice (in particular, appropriate to apply the bacterial culture
data), it is difficult to give theoretical guarantee of the efficiency to the level-
wise algorithms from the view of enumeration. In this paper, as a space-efficient
episode mining algorithm, we newly design the episode-growth algorithm, called
PolyFreqDmd, to enumerate frequent diamond episodes.

The algorithm PolyFreqDmd adopts the depth-first search, instead of the
level-wise search. Then, the algorithm finds all of the frequent diamond episodes
in an input sequence S without duplication in O(|Σ|2n) time per an episode and
in O(|Σ|+n) space, where Σ and n are an alphabet and the length of S, respec-
tively. Hence, we can guarantee that the episode-growth algorithm enumerates
frequent diamond episodes in polynomial delay and in polynomial space. Further,
we presents some practical optimization techniques for reducing the running time
and the required space of the algorithm PolyFreqDmd.

This paper is organized as follows. In Section 2, we introduce diamond
episodes and other notions necessary to the later discussion. In Section 3, we
present the algorithm PolyFreqDmd and show its correctness and the time
complexity. In Section 4, we give some experimental results from randomly gen-
erated event sequences to evaluate the practical performance of the algorithms.
In Section 5, we conclude this paper and discuss the future works.

2 Diamond Episode

In this section, we prepare diamond episodes and the related notions necessary
to later discussion. We denote the sets of all integers and all natural numbers
by Z and N, respectively. For a set S, we denote the cardinality of S by |S|.
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Fig. 1. (Left) An input sequence S = (S1, . . . , S6) of length n = 6 over Σ = {A, B, C}
and their k-windows. (Right) Serial episode P = A �→B �→C and a diamond episode
Q = A �→{A,B} �→C. In the sequence S , we indicate an occurrence (embedding) of Q
in the second window W2 in circles and arrows. See Example 1 and 2 for details.

Let Σ = {1, . . . , m} (m ≥ 1) be a finite alphabet with the total order ≤ over
N. Each element e ∈ Σ is called an event1. An input event sequence (input
sequence, for short) S on Σ is a finite sequence 〈S1, . . . , Sn〉 ∈ (2Σ)∗ of events
(n ≥ 0), where Si ⊆ Σ is called the i-th event set for every 1 ≤ i ≤ n. Then,
we call n the length of S and denote it by |S|, and define the total size of S by
||S|| =

∑n
i=1 |S|. Clearly, ||S|| = O(|Σ|n), but the converse is not always true.

For a fixed input sequence 〈S1, . . . , Sn〉 ∈ (2Σ)∗, a position or an index on S is
any integer, where we allow an index out of S by defining that Si = ∅ if i is either
i ≤ 0 or i > n. Let 1 ≤ k ≤ n be a fixed positive integer, called the window width.
For any index −k + 1 ≤ i ≤ n, we define the k-window WS,k

i at position i in S
by the contiguous subsequence of length k of S as follows: WS,k

i = wS(i, k) =
〈Si, . . . , Si+k−1〉 ∈ (2Σ)k. We denote the set { WS,k

i | − k + 1 ≤ i ≤ n } of all k-
windows in S by WS,k. We simply write Wi and W instead of WS,k

i and WS,k by
omitting the scripts S and k, when they are clear from the context. Moreover, we
may identify the set of all k-windows by the set {−k+1 ≤ i ≤ n | i ∈ WS,k} ⊆ Z
of their indices.

A serial episode over Σ of length m ≥ 0 (or, m-serial episode) is a sequence
P = 〈a1, . . . , am〉 ∈ Σ∗ of events.

Definition 1. A diamond episode over Σ is either an event a ∈ Σ (a 1-serial
episode) or a triple P = 〈a, E, b〉 ∈ Σ×2Σ×Σ (called a proper diamond episode),
where a, b ∈ Σ are events and E ⊂ Σ is a subset of Σ. Then, we call a, b, and E
the source, the sink , and the body of P , respectively. For the body E, we denote
the maximum element in E (w.r.t. Σ) by max(E).

To emphasize the chronological dependencies of events, we often write (a1 
→
· · · 
→ am) and (a 
→E 
→ b) for an m-serial episode 〈a1, . . . , am〉 and a diamond
episode 〈a, E, b〉, respectively. Also we denote the classes of m-serial episodes,
1 Mannila et al. [7] originally referred to each element e ∈ Σ itself as an event type

and an occurrence of e as an event . However, we simply call both of them as events.



proper diamond episodes and diamond episodes (over Σ) by SEm, PDE and
DE , respectively. Since any (a 
→ b) ∈ SE2 and any (a 
→ b 
→ c) ∈ SE3 are
equivalent to (a 
→ ∅ 
→ b) and (a 
→ {b} 
→ c) ∈ PDE , respectively, we see that
SE1 ∪ SE2 ∪ SE3 ∪ PDE = DE .

Example 1. In Figure 1, we show examples of an event sequence S = (ABC, AB,
A, AB, ABC, AB) of length n = 6, a serial episode P = A 
→ B 
→ C and a
diamond episode Q = A 
→{A, B} 
→C on an alphabet of events Σ = {A, B, C},
where the body {A, C} is written as a sequence AC.

Next, we introduce the concept of occurrences of episodes in a window. Then,
we give the formal definition of the occurrences of episodes, which is consistent
with the original definition by [7]. Let P = e1 
→ · · · 
→ en be a serial episode,
Q = es 
→ {e1, . . . , em} 
→ et a diamond episode and W = 〈S1 · · ·Sk〉 ∈ WS,k a
window, respectively. A serial episode P = e1 
→ · · · 
→ em occurs in an window
W = 〈S1 · · ·Sk〉 ∈ WS,k, denoted by P  W , iff there exists some mapping
h : {1, . . . , m} → {1, . . . , k} satisfying (i) 1 ≤ h(1) < · · · < h(m) ≤ k, and (ii)
ei ∈ Sh(i) holds for every 1 ≤ i ≤ m.

Definition 2 (occurrence for a diamond episode). A diamond episode P =
es 
→{e1, . . . , em} 
→et (m ≥ 0) occurs in an window W = 〈S1 · · ·Sk〉 ∈ WS,k, de-
noted by D  W , iff there exists some mapping h : {s, t, 1, . . . , m} → {1, . . . , k}
satisfying (i) for every i ∈ {1, . . . , m}, 1 ≤ h(s) < h(i) < h(t) ≤ k holds, and (ii)
ei ∈ Sh(i) holds for every i ∈ {s, t, 1, . . . , m}.

For a window W and an event e ∈ Σ, we denote the first and the last position
in W at which e occurs by st(e, W ) and et(e, W ), respectively. The matching
algorithm for diamond episodes will be studied in Section 3.

For an episode P , we define the occurrence list for P in S by WS,k(P ) =
{ −k + 1 ≤ i ≤ n |P  Wi }, the set of occurrences of P in an input S. We
may call the element i ∈ WS,k(P ) a label . If i ∈ WS,k(P ), then we say that an
episode P occurs in S at position i or at the i-th window.

Example 2. Consider an input event sequence S = (ABC, AB, A, AB, ABC, AB)
in Figure 1. Then, if the window width k is 4, has nine 4-windows from W−2

to W6 for all −2 ≤ i ≤ 6, i.e., WS,5 = { Wi | − 2 ≤ i ≤ 6 }. Among them, the
window list for a diamond episode P = A 
→AB 
→C is W(P ) = {W2, W3}.

Lemma 1. Let P be a partial diamond episode (es 
→E 
→et) and W a window
in WS,k. Then, P  W iff for every e ∈ E, there exists some position p for e
such that e ∈ Sp and st(es, W ) < p < et(et, W ) hold.

Proof. (Only if-direction) If P  W then there exists some embedding h from P
to W . By restricting h to the serial episode (es 
→· · · 
→et), we obtain the claim.
(If-direction) Suppose that for every e ∈ E, there exists a position pe for e with
st(es, W ) < p < et(et, W ). Then, we can build a mapping h by h(es) = st(es, W ),
h(et) = et(et, W ), and h(e) = pe for every e ∈ E. Then, the claim holds. ��



Lemma 1 implies the following two important corollaries.

Corollary 1 (serial construction of diamond episodes). Let P be a partial
diamond episode (es 
→E 
→et) (m ≥ 0) and W a window in WS,k. Then, P  W
iff (es 
→e 
→es)  W for every e ∈ E.

Corollary 2 (anti-monotonicity for diamond episodes). Let a, b ∈ Σ be
events, and E, F ⊆ Σ be event sets. For every frequency threshold σ and window
width k ≥ 1, if E ⊇ F , then (a 
→E 
→b) ∈ FS,k,σ implies (a 
→F 
→b) ∈ FS,k,σ.

Let S be an input sequence, k ≥ 1 a window width and P a diamond episode
a 
→E 
→ b. The (absolute) frequency of P in S is defined by the number of k-
windows freqS,k(P ) = |WS,k(P )|. A minimum frequency threshold is any integer
1 ≤ σ ≤ |WS,k|. A diamond episode P is σ-frequent in S if freqS,k(P ) ≥ σ. Note
that the frequency is an absolute value, while the support is a relative value. We
denote by FS,k,σ be the set of all σ-frequent diamond episodes occurring in S.

Definition 3. Frequent Diamond Episode Mining Problem: Given an
input sequence S, a window width k ≥ 1, and a minimum frequency threshold
σ ≥ 1, the task is to find all σ-frequent diamond episodes P ∈ FS,k,σ occurring
in S with window width k without duplicates.

In the remainder of this paper, we design an algorithm for efficiently solving
the frequent diamond episode mining problem in the sense of enumeration algo-
rithms [2, 4]. Let N be the total input size and M the number of all solutions. An
enumeration algorithm A is of output-polynomial time, if A finds all solutions
S ∈ S in total polynomial time both in N and M . Also A is of polynomial delay,
if the delay, which is the maximum computation time between two consecutive
outputs, is bounded by a polynomial in N alone. It is obvious that if A is of
polynomial delay, then so is of output-polynomial.

3 A Polynomial-Delay and Polynomial-Space Algorithm

In this section, we present a polynomial-delay and polynomial-space algorithm
PolyFreqDmd for mining all frequent diamond episodes in a given input se-
quence. Let S = (S1, . . . , Sn) ∈ (2Σ)∗ be an input sequence of length n and total
input size N = ||S||, k ≥ 1 be the window width, and σ ≥ 1 be the minimum
frequency threshold.

In Fig. 2, we show an outline of our polynomial-delay and polynomial-space
algorithm PolyFreqDmd and its subprocedure FreqDmdRec for mining fre-
quent diamond episodes of DE appearing in an input sequence S.

The algorithm PolyFreqDmd is a backtrack algorithm that searches the
whole search space from general to specific using depth-first search over the
class FDE of frequent diamond episodes. For every pair of events (a, b) ∈ Σ,
PolyFreqDmd starts the depth-first search by calling the recursive procedure
FreqDmdRec with the smallest (complete) diamond episode Dab = (a 
→ ∅ 
→
b) ∈ DE and with its occurrence window list W(Dab) occurs.



algorithm PolyFreqDmd(S , k, Σ, σ)
input: input event sequence S ∈ (2Σ)∗ of length n, window width k > 0,
alphabet of events Σ, the minimum frequency 1 ≤ σ ≤ n + k;
output: frequent diamond episodes; {
1 Σ0 := the set of all events apparing no less than σ windows (Σ0 ⊆ Σ);
2 foreach ( a ∈ Σ0 ) do
3 output a;
4 foreach ( b ∈ Σ0 ) do
5 D0 := (a �→∅ �→b); //2-serial episode
6 W0 := the occurrence window list WS,k(D0) for D0;
7 FreqDmdRec(D0, W0,S , k, Σ0, σ);
8 end for
}
procedure FreqDmdRec(D = (a �→E �→b), W,S , k, Σ, σ)
output: finds all frequent diamond episodes of the form a �→E �→b; {
1 if ( |W | ≥ σ ) then
2 output D; //(*) output D if the depth is odd (alternating output);
3 foreach ( e ∈ Σ (e > max(E) ) ) do
4 C = a �→ (E ∪ {e}) �→b;
5 U := UpdateDmdOcc(W, e,D, k,S); //Computing U = WS,k(C)
6 FreqDmdRec(C,U,S , k, Σ, σ);
7 end for
8 //(*) output D if the depth is even (alternating output);
9 end if
}

Fig. 2. The main algorithm PolyFreqDmd and a recursive subprocedure FreqDm-

dRec for mining frequent diamond episodes in a sequence.

By Corollary 2, in each iteration of FreqDmdRec, the algorithm tests if the
current candidate D = (a 
→E 
→b) is frequent. If so, FreqDmdRec output D,
and furthermore, for every event e ∈ Σ such that e > max(E), FreqDmdRec

grows diamond episode D by adding the new event e to the body E. Otherwise,
FreqDmdRec prunes the search below D and backtrack to its parent. We call
this process the tail expansion for diamond episodes. For episodes P, Q, if Q is
generated from P by adding new event e as above, then we say that P is a parent
of Q, or Q is a child of P .

Lemma 2. For any the window width k > 0 and any minimum support σ, the
algorithm PolyFreqDmd enumerates all and only frequent diamond episodes
from S without duplicates.

Proof. Suppose that Q = (a 
→ E ∪ {e} 
→ b) ∈ DE is a child of some P =
(a 
→E 
→ b) ∈ DE obtained by the tail expansion such that e > max(E). From
Corollary 2, we see that any frequent Q can be obtained by expanding some
frequent parent P . Furthermore, since e > max(E), the parent P is unique for
each Q. This means that the parent-child relationship forms a spanning tree T



algorithm UpdateDmdOcc(D, e, W, k,S)
input: a parent serial episode D = (a �→E �→b), a new event e > max(E),
the old occurrence list W for D, k ≤ 1, an input sequence S ;
output: the new occurrence list U for the child C = (a �→E ∪ {e} �→b); {

V := FindSerialOcc(P = (a �→e �→b), k,S);
return U := W ∩ V ;

}
procedure FindSerialOcc((a �→e �→b), k,S)
{ return the occurrence list WS,k(P ) for P in S ; }

Fig. 3. The algorithm UpdateDmdOcc for incremental update of the occurrence list.

for all frequent diamond episodes in DE . Since FreqDmdRec makes the DFS
on T by backtracking, the result immediately follows. ��

In the recursive procedure FreqDmdRec in Fig. 2, the procedure newly
create a child episode C = (a 
→E ∪ {e} 
→ b) from the parent D = (a 
→E 
→ b)
by tail expansion with e ∈ Σ at Line 4. Then, at Line 5, it computes the new
occurrence window list U = WS,k(C) for C in S. To compute the new list U , we
can use a native procedure that scans all k-windows in S one by one for checking
occurrences of C.

Lemma 3. There is an algorithm that computes the occurrence of a 3-serial
episode P = a 
→ b 
→ c in a given window W of width k in O(||Wi||) = O(|Σ|k)
time, where ||Wi|| =

∑i+k−1
j=i |Sj|.

From Lemma 3, this naive algorithm requires O(|Σ|kmn) time, where k is
the window width, m = ||D|| is the episode size, and n = |S| is the input length.

In Fig. 3, we show an improved algorithm UpdateDmdOcc that computes
the new occurrence list U = WS,k(C) in O(|Σ|kn) time, by dropping the factor
of m = ||C||, with incrementally updating the old list W for the parent D.
To see the validity of the improved algorithm, we require two properties, called
the serial construction for DE shown in Corollary 1 and the downward closure
property for DE shown in Lemma 4 below. Here, Lemma 4 is an extension of the
downward closure property for itemsets [1].

Lemma 4 (downward closure property). Let a, b ∈ Σ and E ⊆ Σ. Then,
for any input sequence S and any k ≥ 1, the following statement holds:

WS,k(a 
→(E1 ∪ E2) 
→b) = WS,k(a 
→E1 
→b)
⋂

WS,k(a 
→E2 
→b).

From Lemma 3 and Lemma 4, we see the correctness of the improved al-
gorithm UpdateDmdOcc in Fig. 3, and have the next lemma. Note in the
following that the computation time of UpdateDmdOcc does not depends on
the size m = ||C|| of the child episode. If we implement the procedure FindSe-

rialOcc by an algorithm of Lemma 3, we have the next result.



procedure FastFindSerialOcc(P = (a �→e �→b), k,S = 〈S1, . . . Sn〉)
input: serial episode P = (a �→e �→b), window width k > 0, an input sequence S ;
output: the occurrence list W for P ;
{

W := ∅; (x, y, z) := (0, 0, 0);
for (i := −k + 1, . . . , n ) do

last := i − 1; end := i + k
while x < end and (not (x > last and e ∈ Sx)) do x := x + 1;
while y < end and (not (y > x and e ∈ Sy)) do y := y + 1;
while z < end and (not (z > y and b ∈ Sz)) do z := z + 1;
if ( last < x < y < z < end ) then W := W ∪ {i};

//(x, y, z) is the lexicographically first occurrence of P in Wi;
end for
return W;

}

Fig. 4. An improved algorithm FirstFindSerialOcc for computing the occurrence
list of a serial episode.

Lemma 5. The algorithm UpdateDmdOcc in Fig. 3, given the old list W
for the parent diamond episode D and a newly added event e, computes the
new occurrence list U = WS,k(C) for a new child C in O(kN) = O(|Σ|kn)
time, where n = |S| and N = ||S|| are the length and the total size of input S,
respectively.

Next, we present a faster algorithm for implementing the procedure FindSe-

rialOcc for serial episodes than that of Lemma 3. In Fig. 4, we show the faster
algorithm FastFindSerialOcc that computes W(P ) for a 3-serial episode
P = a 
→e 
→b by a single scan of an input sequence S from left to right.

Lemma 6. The algorithm FastFindSerialOcc in Fig. 4 computes the occur-
rence list of a 3-serial episode P = a 
→b 
→c in an input sequence S of length n
in O(N) = O(|Σ|n) time regardless window width k, where N = ||S||.

Corollary 3. Equipped with FastFindSerialOcc in Fig. 4, the modified al-
gorithm UpdateDmdOcc computes U = WS,k(C) for a child C ∈ DE from the
list W = WS,k(D) for the parent D ∈ DE and e ∈ Σ in O(N) = O(|Σ|n) time,
where n = |S| and N = ||S||.

During the execution of the algorithm FreqDmdRec, the subprocedure
FindSerialOcc (or FastFindSerialOcc) for updating occurrence lists are
called many times with the same arguments ((a 
→ e 
→ b), k,S) (e ∈ Σ). In the
worst case, the number of calls may be |Σ| times in the search paths. Therefore,
we can achieve the reduction of the number of calls for FindSerialOcc by
memorizing the results of the computation in a hash table TABLE.

In Fig. 5, we show the codes for practical speed-up method using dynamic
programming. Then, we modify PolyFreqDmd in Fig. 2 and UpdateDmdOcc

in Fig. 3 as follows:



1 global variable: a hash table TABLE : Σ → 2{−k+1,...,n};
2 initialization: TABLE := ∅;
3 procedure LookupSerialOcc((a �→e �→b), k ∈ N,S) {
4 if (TABLE[e] = UNDEF ) then
5 V := FindSerialOcc((a �→e �→b),k,S);
6 if |V | ≥ σ then TABLE := TABLE ∪ {〈 e, V 〉 };
7 end if;
8 return TABLE[e];
9 }

Fig. 5. Practical speed-up of FindSerialOcc using dynamic programming.

– Before Line 5 of PolyFreqDmd, insert Line 2 (initialization) in Fig. 5.
– Replace the call of FindSerialOcc((a 
→e 
→b), k,S) in FreqDmdRec by

the call of LookupSerialOcc((a 
→e 
→b), k,S) in Fig. 5.

This modification does not change the behavior of procedures PolyFre-

qDmd, FreqDmdRec and UpdateDmdOcc. Moreover, this makes the total
number of the calls of FindSerialOcc to be bounded above by |Σ|3, while it
uses O(|Σ|n) space in main memory. In Section 4 below, we know this technique
will be useful in practice.

The running time of the algorithm FreqDmdRec in Fig. 2 mainly depends
on the time T (m, N) for the subprocedure UpdateDmdOcc at Line 5 to com-
pute the occurrence list U = WS,k(D) of a candidate D ∈ DE in S, where
m = ||D|| and N = ||S||.

Unfortunately, if the height of the search tree is d = Θ(m) = Θ(|Σ|), then
the straightforward execution of the algorithm FastFindSerialOcc in Fig. 4
yields the delay of O(d · |Σ| · T (n, N)), where factor d comes from that it takes
at least d recursive calls to come back to the root from the leaf of depth d. We
can remove this factor d = Θ(m) by using a technique called alternating output
in backtracking [10], which can be realized by replacing Line 2 and Line 8 in the
algorithm FreqDmdRec with the corresponding lines (*) in the comments.

Theorem 1. Let S be any input sequence of length n. For any window width
k ≥ 1 and minimum frequency threshold σ ≥ 1, the algorithm PolyFreqDmd

in Fig. 2 finds all σ-frequent diamond episodes D in DE occurring in S without
duplicates in O(|Σ|N) = O(|Σ|2n) delay (time per frequent episode) and O(mn+
N) = O(|Σ|n) space, where N = ||S|| and m = ||D|| is the maximum size of
frequent episodes.

Corollary 4. The frequent diamond episode mining problem is solvable in linear
delay w.r.t. the total input size and in polynomial space.

Finally, we can reduce the space complexity of the algorithm PolyFreqDmd

by using the diffset technique introduced by Zaki [11] for itemset mining, which
can be realized by replacing Line 5 and Line 6 of PolyFreqDmd with the
code in Fig. 6. Hence, we can reduce the space complexity in Theorem 1 to
O(m + n) = O(|Σ| + n).



1 C = a �→ (E ∪ {e}) �→b;
2 Δ := FindSerialOcc(P = (a �→e �→b),k,S);
3 W := W − Δ;
4 FreqDmdRec(C,U,S , k, Σ, σ);
5 W := W ∪ Δ;
6 C = a �→ (E − {e}) �→b;

Fig. 6. The diffset technique in PolyFreqDmd.

4 Experimental Results

In this section, we give the experimental results for the following combinations
of the algorithms given in Section 3, by applying to the randomly generated
event sequences S = (S1, . . . , Sn) over an alphabet Σ = {1, . . . , s}, where each
event set Si (i = 1, . . . , n) is generated by a uniform distribution with letter
probability 0 ≤ p ≤ 1/|Σ| and stopping probability 1 − p.

DF : PolyFreqDmd (Fig. 2) with FindSerialOcc (Fig. 3).
DF+SWO : DF with alternative output (SWO) (Fig. 2 with (*)).
DF+FFS : DF with fast update by FastFindSerialOcc (FFS) (Fig. 4).

DF+DIFF : DF with diffset technique (DIFF) (Fig. 6).
DF+DP : DF-FFS with dynamic programming (DP) (Fig. 5).

All experiments were run in a PC (AMD Mobile Athlon64 Processor 3000+,
1.81GHz, 2.00GB memory) with 32-bit x86 instruction set. Without saying ex-
plicitly, we assume that the length of the sequence is n = |S| = 2000, the
alphabet size is s = |S| = 30, the probability of each event is p = 0.1, the
window width is k = 10, the minimum frequency threshold is σ = 0.4.

Fig. 7 shows the running time and the number of solutions of the algorithms
DF, DF-FFS and DF-DP for the input length n, where s = 20, k = 10 and
σ = 0.1n. Then, we know that DF-FFS is twice as faster as DF and DF-DP
is one hundred times as faster as DF. On the other hand, we cannot find any
difference between DF-SWO, DF-DIFF and DF on this data set, although the
first two techniques are useful in technical improvements. Moreover, the running
time of these algorithms seems to be linear in the input size and thus expected
to scales well on large datasets.

Fig. 8 shows the running time for the number of outputs, where n = 10, 000,
k = 30 and σ = 0.3n. Then, we see that the slope is almost constant and thus
the delay is just determined by the input size as indicated by Theorem 1.

Fig. 9 shows the running time of DF-DP, our fastest algorithm, with varying
the minimum support 0.5n ≤ σ ≤ 5.0n with the input size n = 2000. We see
that the number of outputs, and thus, the running time increase as σ decreases.

Figs. 10, 11 and 12 show the running time of the algorithms DF, DF-FFS
and DF-DP with varying the window width 13 ≤ k ≤ 25, the size of alphabet
10 ≤ |Σ| ≤ 50 and the event probability 0.02 ≤ p ≤ 0.12, respectively. Then, we
see that DF-DP outperforms other algorithms in most cases. The performance of
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width 13 ≤ k ≤ 25, where n = 2, 000
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Fig. 12. Running time for the occurrence
probability of events 0.02 ≤ p ≤ 0.12 with
span 0.02, where n = 2, 000 and σ = 0.4n.

DF-DP is stable in most datasets and the parameter settings. We also see that
DF-FFS is from 20% to 60% faster than DF.

Overall, we conclude that the proposed algorithm FindDmdMain with the
practical speed-up technique by dynamic programming in Fig. 5 (DF-DP) is quite
efficient on the data sets used these experiments. The fast linear-time update by
FastFindSerialOcc (DF-FFS) achieves twice speed-up.



5 Conclusion

This paper studied the problem of frequent diamond episode mining, and pre-
sented an efficient algorithm PolyFreqDmd that finds all frequent diamond
episodes in an input sequence in polynomial delay and polynomial space in the
input size. We have further studied several techniques for reducing the time and
the space complexities of the algorithm.

Possible future problems are extension of PolyFreqDmd for general frag-
ments of DAGs [7, 8], and efficient mining of closed patterns [2, 3, 8, 11] for di-
amond episodes and their generalizations. Also, we plan to apply the proposed
algorithm to bacterial culture data [5, 6].
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